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Rn Contains a Division Ring iff R Does 

Ayman Badawi 

INTRODUCTION. Let R be a ring with 1, and let Rn denote the complete matrix 
ring of all n X n matrices over R under the usual matrix addition and multiplica- 
tion. Recall A, B E Rn are similar iff there exists P E Rn such that A = PBP-'. 
If A E Rn is similar over R to a diagonal matrix, then A is called [1] diagonable 
over R. For B E Rn, b1ij denotes the entry of B in the ith row and jth column. 

In this note, we give an alternative proof of [1, Theorem 1] which is quite 
shorter than that in [1]. We would like to point out that our proof begins exactly 
like the original. 

Theorem ([1, Theorem 1]). Let R be a ring with 1 for which each idempotent matrix 
in Rn is diagonable over R. Then R contains a division ring if and only if Rn contains 
a division ring. 

Proof: If R contains a division ring, then clearly Rn contains a division ring. 
Assume Rn contains a division ring K. The division ring K has an identity-call it 
J-and by the hypothesis PJP-1 = I a diagonal matrix for some invertible matrix 
P E Rn . Since the conjugation of Rn by P induces a ring automorphism of Rn , 
M = PKP-1 is a division ring of Rn and has I as the identity. Hence I is a nonzero 
idempotent of Rn. Let S = {A E M: A is diagonal}. Since I E S, S is not empty. 
We leave it to the reader to verify that S is a division subring of M. Since I # 0, 
there exists 1 < j < n such that i11 is a nonzero idempotent of R. Let D = {aii: 
A E S}. Then D is a division ring of R with i,, as the identity. 

We end this note with some examples that satisfy the hypothesis of the Theorem 
and with one example where the hypothesis fails. Let R be a commulative ring 
with 1. Then R is called ID (basal) as in [7] ([2]) iff for every n ? 1 the 
idempotents of Rn are diagonizable. Foster [2] has shown that if R is a principal 
ideal domain, then R is ID. Seshadri [6] has shown that if R is a principal ideal 
domain, then R[x] is ID. In particular if F is a field, then F[x, y] is ID. Steger [7] 
has shown that if R is an elementary division ring (i.e., for every n ? 1 and 
A e RRn there exist invertible matrices P, Q in Rn such that PAQ is diagcnal) then 
R is ID. Also; Steger has shown that if R is ir-regular ring (i.e., for every x in R 
there exists n > 1 and y in R (n and y depending on x) such that x"yxn = x") 
then R- is ID. In particular for every m 2 1 Zm (i.e., Z/mZ) is ID (Foster has 
shown independently that Zm is ID). 

Finally, Theorem 3 in [7] states that if R is ID, then every invertible ideal of R 
is principal. Thus if R is a Dedekind domain which is not principal, then R is not 
ID. In particular, let R = Z[ -5] (Z is the set of all integers). Then R is a 
Dedekind domain, see [4, EX. 37, P. 70]. But R is not a unique factorization 
domain, for example 21 does not have unique factorization in R. Thus R is not 
principal and therefore it is not ID. 
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A Further Simplification of Dixon's Proof 
of Cauchy's Integral Theorem 

Peter A. Loeb 

The modification in [1] of Dixon's proof of the Cauchy Integral Theorem and 
Formula is based on the proposition stated below. In this note we give a proof of 
that proposition which is more suitable for undergraduate students. In what 
follows, G will be an open set in the complex plane C, and y will be a closed 
rectifiable curve. We write f e H(G) if f is holomorphic, i.e. analytic, in G, and 
we use the notation D(z, r) for the disk {w E C: Iw - zI < r}. The trace of y in C 
is denoted by {y}; we say the curve y is in G when {y} c G. 

Proposition. If y is a curve in G, then for any z E {'y4 there is a closed curve or in G 
with z 4 {or} such that Jff = ft,f for all f e H(G). 

Proof: We assume that there is a point + # z with ; Ee {-y}; otherwise the result is 
trivial. Pick r > 0 so that D(z, r) c G and D(z, r). We will assume that y is 
given by y(t) for t e [0, 11 and y(0) = -y(l) = ;. By the uniform continuity of the 
mapping y, there is a natural number n such that if s, t E [0, 1] and It - sl < 
1/n, then ly(t) - y(s)I < r. Partition the interval [0, 1] using the points 0 < 1/n 
< ... < (n - 1)/n < 1. Let O-Q X0 <xX2 < * * * <Xm = 1 be the set of 
partition points k/n such that y(k/n) # z. If between adjacent points xi and xi,, 
there is a point of the form k/n or any other point to with y(t0) - z, then the 
path y(t), xi < t < xi+,, is in the disk D(z, r). In this case, we may replace the 
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