

Rn Contains a Division Ring \$\operatorname{iff} R\$ Does Author(s): Ayman Badawi Source: *The American Mathematical Monthly*, Vol. 100, No. 7 (Aug. - Sep., 1993), pp. 679-680 Published by: <u>Mathematical Association of America</u> Stable URL: <u>http://www.jstor.org/stable/2323892</u> Accessed: 20/04/2011 16:59

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly.

R_n Contains a Division Ring iff R Does

Ayman Badawi

INTRODUCTION. Let R be a ring with 1, and let R_n denote the complete matrix ring of all $n \times n$ matrices over R under the usual matrix addition and multiplication. Recall $A, B \in R_n$ are similar iff there exists $P \in R_n$ such that $A = PBP^{-1}$. If $A \in R_n$ is similar over R to a diagonal matrix, then A is called [1] diagonable over R. For $B \in R_n$, b_{ii} denotes the entry of B in the *i*th row and *j*th column.

In this note, we give an alternative proof of [1, Theorem 1] which is quite shorter than that in [1]. We would like to point out that our proof begins exactly like the original.

Theorem ([1, Theorem 1]). Let R be a ring with 1 for which each idempotent matrix in R_n is diagonable over R. Then R contains a division ring if and only if R_n contains a division ring.

Proof: If R contains a division ring, then clearly R_n contains a division ring. Assume R_n contains a division ring K. The division ring K has an identity—call it J—and by the hypothesis $PJP^{-1} = I$ a diagonal matrix for some invertible matrix $P \in R_n$. Since the conjugation of R_n by P induces a ring automorphism of R_n , $M = PKP^{-1}$ is a division ring of R_n and has I as the identity. Hence I is a nonzero idempotent of R_n . Let $S = \{A \in M: A \text{ is diagonal}\}$. Since $I \in S$, S is not empty. We leave it to the reader to verify that S is a division subring of M. Since $I \neq 0$, there exists $1 \le j \le n$ such that i_{jj} is a nonzero idempotent of R. Let $D = \{a_{jj}: A \in S\}$. Then D is a division ring of R with i_{jj} as the identity.

We end this note with some examples that satisfy the hypothesis of the Theorem and with one example where the hypothesis fails. Let R be a commutative ring with 1. Then R is called ID (basal) as in [7] ([2]) iff for every $n \ge 1$ the idempotents of R_n are diagonizable. Foster [2] has shown that if R is a principal ideal domain, then R is ID. Seshadri [6] has shown that if R is a principal ideal domain, then R[x] is ID. In particular if F is a field, then F[x, y] is ID. Steger [7] has shown that if R is an elementary division ring (i.e., for every $n \ge 1$ and $A \in R_n$ there exist invertible matrices P, Q in R_n such that PAQ is diagonal) then R is ID. Also; Steger has shown that if R is π -regular ring (i.e., for every x in Rthere exists $n \ge 1$ and y in R (n and y depending on x) such that $x^n yx^n = x^n$) then R is ID. In particular for every $m \ge 1$ Z_m (i.e., Z/mZ) is ID (Foster has shown independently that Z_m is ID).

Finally, Theorem 3 in [7] states that if R is ID, then every invertible ideal of R is principal. Thus if R is a Dedekind domain which is not principal, then R is not ID. In particular, let $R = Z[\sqrt{-5}]$ (Z is the set of all integers). Then R is a Dedekind domain, see [4, EX. 37, P. 70]. But R is not a unique factorization domain, for example 21 does not have unique factorization in R. Thus R is not principal and therefore it is not ID.

- 1. Jacob T. B. Beard, Jr. and Robert McConnel, Matrix fields over the integers modulo *m*, Linear Algebra and Its Applications 14, (1976), 95-105.
- 2. A. L. Foster, Maximal idempotent sets in a ring with unit, Duke Math. J. 13 (1946) 247-258.
- 3. L. Gilman and M. Henriksen, Some remarks about elementary divisor rings, *Tran. Amer. Math. Soc.* 82 (1956), 362–365.
- 4. Harry C. Hutchins, Examples of Commutative Rings, Harry C. Hutchings, 1981.
- 5. I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949), 464-491.
- 6. C. S. Seshadri, Triviality of vector bundles over affine space K₂, Proc. Nat. Acad. of Sci. USA 44 (1958), 456-458.
- 7. A Steger, Diagonability of idempotent matrices, Pac. J. Math. 19 (1966), 535-542.

Dedicated to Prof. Nick Vaughan on his retirement.

Department. of Mathematics University of North Texas Denton, TX. 76203

A Further Simplification of Dixon's Proof of Cauchy's Integral Theorem

Peter A. Loeb

The modification in [1] of Dixon's proof of the Cauchy Integral Theorem and Formula is based on the proposition stated below. In this note we give a proof of that proposition which is more suitable for undergraduate students. In what follows, G will be an open set in the complex plane C, and γ will be a closed rectifiable curve. We write $f \in H(G)$ if f is holomorphic, i.e. analytic, in G, and we use the notation D(z, r) for the disk { $w \in \mathbb{C}: |w - z| < r$ }. The trace of γ in C is denoted by { γ }; we say the curve γ is in G when { γ } $\subset G$.

Proposition. If γ is a curve in G, then for any $z \in \{\gamma\}$ there is a closed curve σ in G with $z \notin \{\sigma\}$ such that $\int_{\gamma} f = \int_{\sigma} f$ for all $f \in H(G)$.

Proof: We assume that there is a point $\zeta \neq z$ with $\zeta \in \{\gamma\}$; otherwise the result is trivial. Pick r > 0 so that $D(z, r) \subset G$ and $\zeta \notin D(z, r)$. We will assume that γ is given by $\gamma(t)$ for $t \in [0, 1]$ and $\gamma(0) = \gamma(1) = \zeta$. By the uniform continuity of the mapping γ , there is a natural number n such that if $s, t \in [0, 1]$ and |t - s| < 1/n, then $|\gamma(t) - \gamma(s)| < r$. Partition the interval [0, 1] using the points $0 < 1/n < \cdots < (n-1)/n < 1$. Let $0 = x_0 < x_1 < x_2 < \cdots < x_m = 1$ be the set of partition points k/n such that $\gamma(k/n) \neq z$. If between adjacent points x_i and x_{i+1} there is a point of the form k/n or any other point t_0 with $\gamma(t_0) = z$, then the path $\gamma(t), x_i \leq t \leq x_{i+1}$, is in the disk D(z, r). In this case, we may replace the